.3-20-.8v-69.7c6.4-.6 15-.6 22.5-.6 23.3 0 37.2 12.2 37.2 34.5 0 21.9-15 36.6-39.7 36.6z"/>


I use marine geophysics to study how the Earth’s tectonic plates form, bend, break, subside, and slide past each other. I’m interested in the large-scale processes that shape the Earth’s crust and upper mantle, and how these processes affect people, leading much of my research to focus on the complex interactions that occur at plate boundaries. I mainly focus on acquiring, processing, and interpreting seismic reflection data but also incorporate a variety of other geophysical techniques to further deepen our understanding of the tectonic setting.

Continental Rifting and Breakup

Rifted continental margins are one of the longest tectonic features on Earth, and the process of continental breakup that took place at these margins is fundamental to plate tectonics and the formation of new ocean basins.

Picking up an OBS over Zealandia
Picking up an OBS over Zealandia

Located in the SW Pacific, Zealandia has been refered to as the “Hidden Continent” since ~94% of it is submerged beneath the ocean. During the Cretaceous, eastern Gondwana started continental rifting and breakup to separate northern Zealandia from eastern Australia. Due to its remote location, little work has been done to understand the structure and breakup of the margin. I sailed on the R/V Kairei as part of a multi-leg survey to collect seismic reflection data and wide-angle seismic data to study this unique continental endmember.

Hawaiian-Emperor Seamount Chain

Sailing by Midway Atoll
Sailing by Midway Atoll

Starting at the Big Island of Hawaii and extending to the Aleutian Trench, the Hawaiian-Emperor Seamount Chain is a classic example of a hotspot seamount chain. Check out our blog for information on a recent seismic cruise series using R/V Marcus G. Langseth and stay tuned for future publications.

A previous sonar cruise on the Hawaiian Ridge up to just NW of Kure and Midway Atolls mapped 19 seamounts and discovered deep guyots, likely old preexisting Cretaceous seamounts, intertwined with ones from the Hawaiian Chain.

Subduction Zones

These regions where plates collide produce some of the largest earthquakes, create huge tsunamis, and contain highly deformed belts of rock. My work on subduction zones has covered a range of settings, from the incoming plate to the inner accretionary prism and overlying forearc basin.

Japan Trench

The great 2011 Mw 9.0 Tohoku-oki earthquake at the Japan Trench produced huge co-seismic slip and created the tsunami that devastated much of northeast Japan. I sailed on a rapid-response cruise led by JAMSTEC soon after the earthquake to collect seismic data along this margin.

Nankai Trough
Riser drilling during IODP Exp. 348
Riser drilling during IODP Exp. 348

Due to its potential for great earthquakes, there is a tremendous amount of work to be done at this margin to study earthquake and subduction zone processes. My work has used the Kumano 3D seismic volume, and I sailed on D/V Chikyu to drill deep into the inner accretionary prism.